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SUMMARY 
An efficient finite element algorithm is presented to simulate the planar converging flow for the viscoelastic 
fluid of the Leonov model. The governing equation set, composed of the continuity, momentum and 
constitutive equations for the Leonov fluid flow, is conveniently decoupled and a two-stage cyclic iteration 
technique is employed to solve the velocity and elastic strain fields separately. Artificial viscosity terms are 
imposed on the momentum equations to relax the elastic force and data smoothing is performed on the 
iterative calculations for velocities to further stabilize the numerical computations. The calculated stresses 
agree qualitatively with the experimental measurements and other numerically simulated results available in 
the literature. Computations were successful to moderately high values of Deborah number of about 27.5. 
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INTRODUCTION 

Numerical simulation of viscoelastic fluid flows accompanied by the so-called high-Deborah- 
number problem has been an active research area of non-Newtonian fluid mechanics in the last 

Yeh* systematically categorized the possible causes for the numerical difficulties into 
five classes in a contraction flow simulation and attempted to improve the numerical scheme by 
trying different techniques, but the calculations were still limited to the critical Deborah number 
of unity. A good review of works related to the numerical and experimental study of contraction 
flow was given by White et aL9 They indicated that for a number of viscoelastic models, numerical 
calculations usually failed to converge at relatively low shear rates (with Deborah number of the 
order of unity). Crochet et al. stated the same conclusions for the calculations of different 
viscoelastic flow situations in their book." 

Considerable progress has been made, however, through the deeper mathematical understand- 
ing of the set of equations involved. Beris et al. have demonstrated the formation of stress 
boundary layers that cause the breakdown of numerical solutions at high Deborah number in 
both perturbation analysis' and spectral/finite element calculations" for the viscoelastic flow 
between two eccentric rotating cylinders. Recently, King et al.' used the reconstructed explicitly 
elliptic momentum equation to simulate upper convected Maxwell and modified upper convected 
Maxwell fluid flow in singular geometries and reported that the calculations were limited at high 
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values of Deborah number. Debbaut et al. l4 developed a new mixed algorithm simultaneously 
introducing both multiple bilinear stress sub-elements and the streamline-upwinding technique 
and obtained solutions at very high Deborah number, but they pointed out that such a method is 
very expensive in view of the large frontal width caused by the stress sub-elements. It is worth 
noting that progress up to now has been restricted to the most often used Maxwellian-type 
rheological models. 

In order to direct the study of non-Newtonian fluid mechanics towards 'realistic' polymer flow 
simulation, it is essential to select proper constitutive equations beyond those of the simple 
Maxwellian type and to compare the simulated results with experimental measurements. The 
Leonov model' 5,16 has been employed extensively by the research group of CIMP (Cornell 
Injection Molding Project, Cornell University, Ithaca, NY) to study the viscoelastic flow of 
polymeric material in the injection moulding process since 1978. They have concluded that the 
Leonov model can be satisfactorily applied to predict the different flow situations' 7-19 where the 
viscoelasticity of the polymeric material is known to be significant. From the numerical point of 
view, the potential advantages of using the Leonov model are that the material parameters can be 
easily found from simple rheological experiments and that the resulting equations are readily 
amenable to numerical implementation. Upadhyay and Isayev2' have developed a numerical 
scheme to simulate the two-dimensional flow of a Leonov fluid, where the streamwise integration 
procedure2' was used to integrate the constitutive equations. Artificial viscosity terms were also 
imposed on the momentum equations to relax the elastic force, thus stabilizing the numerical 
calculations. The streamwise integration has some  drawback^^^.'^ which motivate this study to 
develop a different approach to solve the Leonov constitutive equations. 

It was generally agreed that the numerical difficulties of the simulation of viscoelastic flow were 
divided into three parts, namely (1) the integration of stresses, (2) the coupling between stresses 
and velocities and (3) the iterative scheme.24 With regard to the integration of the Leonov 
constitutive equations, which comprise a non-linear hyperbolic system of partial differential 
equations with an equality constraint, an effective finite element scheme has been successfully 
developed in the preliminary part of this In addition the deviatoric stress for the Leonov 
model is skilfully decomposed into viscous and elastic parts. The constitutive equation, which is 
then represented in terms of the elastic strain (C), can be conveniently decoupled from the 
equations of motion if a two-stage cyclic iteration technique" is employed to solve the velocity 
and elastic strain fields separately. In this paper such an iterative scheme has been implemented 
with an efficient finite element algorithm to simulate the planar converging flow for a Leonov 
fluid and has proved to resolve the difficulties (2) and (3) mentioned above. 

THEORETICAL MODELLING FOR THE CONVERGING FLOW 

Basic equations 

For a planar, inertia-free, incompressible Leonov fluid flow with no body forces, the governing 
equations reduce to 

v*v = 0, (1) 
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where v is the velocity vector, p is the indeterminate pressure, I is the unit tensor and C k  is 
the elastic strain tensor for the kth mode of the Leonov model, with q k  and Ok being the 
corresponding shear viscosity and relaxation time respectively. qo is the zero-shear-rate viscosity 
and s is a rheological parameter lying between zero and one. qo is related to s and q k  as1' 

For two-dimensional problems the components for C are 

The simultaneous equations (1)-(3) can be decoupled and solved by a two-stage cyclic iteration 
technique. First, for an initial guess of the velocity field v, the tensor equation (3) can be integrated 
independently by using a Galerkin finite element algorithm (see Reference 25 for details). With the 
elastic strain tensor Ck being solved, the velocity and pressure can then be solved from equations 
(1) and (2). This is equivalent to solving purely viscous flow with a body force. The whole process 
can be viewed as a relaxation from the approximate velocity and stress fields to a steady state 
where both the velocity and stresses are compatible. 

Finite element formulation 

The artificial viscosity method was applied to relax the elastic force in the momentum 
equations.20 The momentum and continuity equations in component form for rectangular 
Cartesian co-ordinates are then given by 

au av 
ax ay - + - =o, 

where u, u are the x, y components of the velocity vector and -0 is the artificial viscosity which is 
prescribed to be very close to qo from numerical experience. The subscripts m and m + 1 indicate 
the mth and (m + 1)th iteration respectively. 

The unknown variables over every discretized element are approximated as 

The Galerkin method is applied to equations (4)-(6) with the velocity interpolation functions !bi 
being used as weighting functions for the equations of motion, (4) and (9, and the pressure 
interpolation functions 4i being used as weighting functions for the continuity equation (6). 
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That is, 
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jA  [equation (4)] $i dA = 0, 

JA [equation (5)] $ i  dA = 0, 

j A  [equation (6)] 4i dA = 0, 

Equations (7)-(9) result in a system of algebraic equations for the nodal unknowns {&}, { C i }  
and {pi] as follows: 

[ k i l l  Lo1 [ k i 3 1  [ 101 Ck221 [kz31 ] 1 := 1 [i:], (10) 
[ k 1 3 1  “%31 Lo1 
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A au au 
ax ay t ,  = - n, + - n,, 
av av 
ax ay ny. t ,  =-n,+ - 

These area integrals over each element were evaluated by using a three-point Gaussian 
quadrature. A global stiffness matrix is obtained by assembling the above matrix [ K ]  from each 
element. The matrix is symmetric, banded and remains unchanged during the iterative process. 
The shape of the elements is taken to be rectangular, with the velocity being interpolated 
quadratically and the pressure linearly, as a common procedure. The values of C k  are computed 
at the Gauss points interpolated quadratically from the nodal values which were solved 
independently from the previously iterated velocity field via another FEM scheme.25 The 
following data-smoothing technique" was used in the iterative calculations for velocity to 
stabilize the numerical computations: 

(1 - P x ) X m +  1 + P x X m  + X m +  1, B x €  [07 11, 

where X denotes the velocity vector and p, is set to 0-5. The subscripts m and m + 1 indicate the 
mth and (m + 1)th iteration respectively. 

Sample problem 

Han and Drexler26 have presented some measurements of stresses for polystyrene (Dow 
Chemical 686) melt flowing through a 60" converging slit die. The flow birefringence technique 
was used to measure stress patterns. The narrow slit had a cross-section of 1-99 x 0.199 cm2. The 
experiment was carried out at 200 "C for a flow rate of 5-36 cm3 min- I, which corresponds to an 
average velocity Uavg in the narrow slit of 02256 cm s-'. For the purpose of comparison, the 
planar converging flow system illustrated in Figure 1 was numerically simulated to test the FEM 
algorithm presented. The following values of the rheological parameters for the two-mode 
Leonov model fitted from the steady state shear viscosity were used in the numerical com- 
putation~:~ 

s =0.0041, 8, = 8-43 x lo-' S,  = 2.28 x lo4 Pa s, 8, = 1.56 x s, v2 = 8.85 x lo2 Pa s. 

The Deborah number is defined asZo 
De=B- - 3 U a v g  

B '  

where B is the half-gap thickness of the narrow slit and eis  the characteristic relaxation time of 
the material defined as 

?O 

U(y)  - 1.27cm 
-c B=0.0995 c m 

I =  4.4 cm - 2 . 3 7 c m A  

Figure 1. Schematic diagram of the planar converging flow 
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For the polymer considered above, the characteristic time &is 0.81 s and De is about 5.5 for this 
sample problem. 

The no-slip condition v = 0 is imposed on solid walls and the symmetry condition is imposed 
along the central axis. Fully developed velocity profiles are assumed at both entry and exit, while 
fully developed elastic strain (Ck) profiles are assumed at entry but not at exit. 

RESULTS AND DISCUSSJON 

Four cases based on different conditions, as shown in Table I, have been considered in our finite 
element calculations. The meshes A and B are very similar with only slight changes near the re- 
entrant corner as shown in Figure 2. The numbers of elements are 150 and 175 and the total 
numbers of nodes are 671 and 781 for meshes A and B respectively. Simulated contour plots of the 
stresses for the three sample calculations RUN1, RUN2 and RUN3 together with the corres- 
ponding experimental data of Han and Drexler26 are shown in Figures 3-9 for comparison. It can 
be seen from Figures 3 and 4 that the use of data smoothing in the iterative velocity calculations is 
effective for the improvement of numerical stability. The effect of mesh refinement on the 

Table I. Sample calculations based on different meshes and the 
use of velocity smoothing 

With data smoothing 
Sample run Mesh in velocity calculations De 

RUN 1 A No 5.5 
RUN2 A Yes 5.5 
RUN3 B Yes 5.5 
RUN4 B Yes 21.5 

Figure 2. (a) Figure element mesh A for the whole flow domain under analysis. (b) Finite element mesh A near the 
entrance to the slit. (c) Finite element mesh B near the entrance to the slit; elsewhere mesh B and mesh A are identical 
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Figure 3. Contours of the calculated shear stress (tXv x Pa) for RUN1 near the entrance to the slit 
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Figure 4. Contours of the calculated shear stress ( rXy x Pa) for RUN2 near the entrance to the slit 

calculation can be observed by comparison of Figures 4 and 5 and of Figures 6 and 7. The 
difference in the contour lines of shear stress shown in Figures 4 and 5 is quite small. Figures 6 
and 7 suggest that the oscillations of the contour lines for the first normal stress difference N ,  
(i.e. Z , , - T ~ ~ )  with mesh A are due to the discretization error resulting from too coarse a mesh, 
since such oscillations are not seen in the case of the finer meshB. From our numerical 
experience, the number of iterations required for convergence is larger and the critical Deborah 
number up to which the convergent solutions can be obtained is lower for computations without 
velocity smoothing than for those with it. Therefore both the velocity smoothing and the finer 
mesh B are essential for the numerical simulation presented in this paper. 
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Figure 5 .  Contours of the calculated shear stress ( T ~ ~  x Pa) for RUN3 near the entrance to the slit 
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Figure 6. Contours of the calculated first normal stress difference ( N ,  x Pa) for RUN2 near the entrance to the slit 

The present results agree well quantitatively with those of UpadhyayZ7 (not shown here) where 
the constitutive equations were integrated along the streamline. It is worth noting that the 
simulated results and the experimental measurements are in agreement only qualitatively (cf. 
Figures 5 and 8 and Figures 7 and 9). One conceivable explanation of the discrepancy between the 
numerical modelling and experiments is that the rheological data are not sufficiently accurate for 
characterization of the material.27 Another source of the discrepancy may be that the entry and 
exit channels used in the experiment of Han and Drex leP  were not long enough, so that the 
assumption of fully developed flow conditions in our theoretical analysis was not exactly 
compatible. 
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Figure 7. Contours of the calculated first normal stress difference ( N ,  x Pa) for RUN3 near the entrance to the slit 
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Figure 8. Contours of the measured shear stress (T ~ "  x Pa) near the entrance to the slit of Han and DrexlerZ6 

Computations were successful for Deborah number up to 27-5, attained by increasing the flow 
rate while keeping the rheological parameters unchanged. Figure 10 shows the contour lines for 
the calculated first normal stress difference for RUN4 just before the divergence of computation. 
It can be seen that fluctuations of the contour lines appear near the solid wall where large stress 
gradients were generated. 

To avoid redundancy, the following discussion will be based on the simulated results for 
RUN3. Figure 11 shows variations of both the first normal stress difference and its viscous part D 
(= 4 q,s &/ax) along the centreline. The velocity gradient &/ax in the viscous part D of the first 
normal stress difference indicates the extent of acceleration of the fluid element along the flow 
direction X .  These two nearly synchronous curves in Figure 11 manifestly justify the significance 
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Figure 10. Contours of the calculated first normal stress difference (N, x Pa) for RUN4 near the entrance to the slit 

of the elongational flow with respect to the elastic force generated in the converging viscoelastic 
flow, although the viscous contribution is two orders of magnitude smaller than that of the total 
first normal stress difference. 

Variations of the normal stress and isotropic pressure along the converging wall are shown in 
Figure 12(a). The profiles for both normal stress and pressure exhibit a tendency to increase near 
the inlet to the small slit, as was observed experimentally by HanZ8 for polyethylene and 
polypropylene melts flowing in a 30" converging channel. Figure 12(b) shows a slight overshoot 
in the axial velocity profile along the centreline, which has been seen for most viscoelastic flows. 

Overall, the physical phenomena observed in Han and Drexler's experimentz6 are well 
described by the model simulation of the present study, but quantitative comparison is incon- 
clusive. As mentioned above, this may require well controlled experiments (e.g. the same 
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Figure 11. First normal stress difference (N, x Pa) and its viscous part (D x lo-* Pa; D=4qosau/dx)  along the 
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boundary conditions for both experimental investigation and theoretical modelling) and good 
rheological characterization of the polymeric material. 

CONCLUSIONS 

We have presented an efficient finite element technique with a two-stage cyclic iterative scheme by 
use of which a planar converging flow of a polymeric material is numerically simulated with the 
Leonov rheological model. Artificial viscosity terms were imposed on the momentum equations 
to relax the elastic force and data smoothing was performed on the iterative calculations for 
velocities to further stabilize the numerical computations. The calculated stresses agree qualitat- 
ively with the experimental measurements and other numerically simulated results available in 
the literature. Computations with mesh refinement were successful to moderately high values of 
Deborah number of about 27-5. It will be useful in the future to generalize this method to 
simulations with other viscoelastic models of differential type. 
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